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Abstract 

Convection  signatures are inferred  in  Jupiter's  upper  troposphere  using  three  tools that are 
applied to global  temperature  maps:  density  maps,  three  dimensional  geostrophy  and the mean 
residual  circulation.  Each  one of the 3 proxies  is  valid if the large  scale transport is  controlled  by 
one out of three  possible  dynamical  balances. The balances are the 3 main  assumptions  behind 
several  theoretical  models of the large  scale  atmospheric  dynamics of the major  planets.  Our  goal 
is to analyze the observations  within the framework of each  one of these  models and, ultimately, 
relate  their  predictions  with the observations.  For  one  proxy, we introduce a linear  formulation 
of global  scale  three-dimensional (3D) geostrophy  with  application to Jupiter, based  on the full 
instead of the primitive equations of atmospheric  flow.  Our  formulation of 3D geostrophy  in  a 
stratified  medium  includes  both the horizontal  and  vertical  projections of the planetary  rotation 
vector.  This  formulation  accounts  for the oblateness of the planet, is  not  singular at the equator, 
and  provides  partial  information about vertical transport. We also  reformulate the hydrostatic 
approximation  for  planetary-scale  studies. A consequence of the new formulation of hydrostatic 
balance  is the possibility of much  smaller  wind  shears than previously  calculated.  Scale  analysis 
is  used to justify the applicability of linear  geostrophic  models to Jupiter. The three  tools are 
applied to a set of global  temperature  maps of the upper  Jovian  troposphere at four  pressure 
levels,  between 100 and 400 mbar, that were obtained  from  mid-infrared  observations  made  in 
June, 1996. Maps of the large-scale  density  distribution at these  pressure  levels  show  higher 
concentration of longitudinal  structures  along  zonal  bands at latitudes  near 15"N and 15"s. 
Possible  signatures of  Hadley  cells and  their  vertical  profile are derived  from the zonal  mean 
temperatures. We conclude  by  giving  observational criteria that can  validate the applicability 
or  not of the theoretical  models that inspired  our  proxies. 
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1 Introduction 

Explaining  the  ability of planetary flows to display very robust  large scale organization 

remains a challenging problem  in  planetary sciences. The  structure of the  Jovian zonal 

winds is one example of such organization. Several models  have attempted  to explain 

these jets. Each model assumes that,  on  the large scale, Jupiter is dominated by  one 

of several possible dynamical regimes. The most  likely regimes are deep convection 

(e.9. Busse 1976), shallow water  dynamics (Cho  and Polvani  1996),  geostrophy  (Rhines 

1975), and Hadley  cell circulations (e.9. Williams & Robinson 1973 or, more recently, 

Condie and Rhines  1994).  Simple models of these regimes describe the effects of one of 

the  main forces driving  the  Jovian  atmosphere by assuming that  it  dominates over the 

other forces. Each  one of the models can  explain different aspects of the  jets  structure 

and dynamics. The first two approaches  motivate our first interpretation of the  data,  the 

buoyancy maps,  geostrophy will constitute our second. The  residual mean  circulation 

will be used as a third  approach  in order to infer Hadley circulation  maps. 

Observational data  are used here to search for evidence that  can  elucidate which 

is the  dominant mechanism driving the  jets  and validate the  results  and  assumptions 

of the theories. The Voyager 1 and 2, and  the Galileo missions added an enormous 

wealth of information  about  the Jovian  atmosphere. The  data revealed very complex 

dynamics at  the cloud top level, and  tracking of visible cloud features ( e . g .  Limaye 

1986, Vasavada et al. 1998) resulted  in  quantitative  maps of horizontal wind  veloci- 

ties at  the high spatial resolutions provided by the spacecraft images. However, the 

retrieval of information at  other levels remains a challenge since the clouds act as a 

thick screen to any  observations of the deeper levels. At the  same  time,  the absence 

of tracers above the clouds hinders the measurement of velocity fields by feature  track- 

ing. A breakthrough  can  be  attained  at  the levels  above the clouds to which infrared 

(IR) observations of thermal emission are sensitive. The  temperature fields so derived 

can be used as a surrogate for horizontal  density  gradients  under the  hydrostatic ap- 
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proximation.  Furthermore, Jupiter’s high  rotation  rate makes geostrophic  balance very 

plausible.  Therefore,  thermal  IR  observations offer the best  available  tool to infer the 

wind circulation  in the upper  troposphere  and lower stratosphere. If the optically  thick 

cloud level is not  a  barrier,  vertical  transport from deeper levels  will  leave a  measurable 

signature at  the heights where IR observations are sensitive. This work presents  possible 

evidence of such  signatures. 

Voyager IR measurements covering irregular,  but  dense,  grids of Jupiter have been 

used previously to  create zonally averaged temperature profiles from which mean winds 

were inferred (e.g. Pirraglia  et  al. 1981, Gierasch et.  al. 1986, who presented  zonal 

average results for 2 pressure levels, and Magalhiies et  al. 1990) and  to analyze the zonal 

mean  residual  circulation  (Gierasch  et  al.  1986). The zonal  geostrophic  winds  derived 

by these authors proved consistent  with  previous and  later  results from cloud  tracking, 

thus validating the geostrophic  balance  assumption. In  a more recent review, Gierasch 

and  Conrath 1993 discussed the information  gained so far and pointed out  the absence 

of global  maps  with  regular coverage of the full  planet. Unlike previous IR  data  sets, 

ground  based  observations  provide  latitude-longitude  maps  with  constant  longitudinal 

resolution and high  signal-to-noise ratio above the clouds. 

The  other main  aspect of this work concerns the formulation of geostrophy. Geostro- 

phy  is defined as the dynamical  balance between the Coriolis forces and  the horizontal 

pressure  gradients  in a hydrostatically  balanced  atmosphere.  Such  conditions  are  found 

in  very rapidly rotating  planets like Jupiter.  In geostrophic  balance,  a velocity field can 

be  caused by horizontal  density  gradients that induce  small  deformations of the  constant 

pressure  surfaces.  These  gradients  along  isobars  can be inferred  from the  temperature 

gradients  measured by IR maps. We discuss  here that exact  geostrophy  balance,  as 

a  linear  solution to  the  equation of atmospheric  motion,  requires  hydrostatic  balance 

and is therefore more likely to apply  in  atmospheric layers that  are  stably  stratified. 

This is the case of the uppermost  tropospheric regions to which our  measurements are 
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sensitive. 

The  literature presents two approaches to geostrophy. The first results  from  the 

linearization of the full three-dimensional  equations for models of planetary convection 

(Chandrasekhar 1961). This  approach  retains  both components  (horizontal  and  radial) 

of the  planetary  rotation vector. We will refer to  this first approach as ‘global’ or 

‘3D’ geostrophy. The second approach  stems  from  the  linearization of the primitive 

equations. It is the most common in  atmospheric  applications, where only the vertical 

component of the  rotation vector is considered. This  method, which we will refer to as 

the  ‘traditional’  approach, is the  standard for atmospheric  studies,  and  has  been chosen 

in  all the previous  studies of geostrophy with  IR measurements 

The  results from the two versions of geostrophic  balance differ completely over large 

scales unless a significant change is introduced  into  the  hydrostatic  approximation  (de 

Verdikre and Schopp 1994). We discuss this change in section  5.1 and use the  term 

‘classical’ to refer to  the unchanged  formulation of the  hydrostatic  approximation. Note 

here that ‘traditional’ is used to refer to  the geostrophic  condition. The most significant 

result of the new formulation is that it does not diverge at equatorial  latitudes.  The full 

3D equations  are at  the core of one convective model for the banded flow structure of the 

major  planets  (Busse 1976). Its linearized geostrophic version has  been discussed in light 

of non-Oberbeck-Boussinesq  models of the  major  planets (Ingersoll and  Pollard 1982) 

and  in  gravitational models (e.9. Hubbard 1998, and references therein) of Jupiter.  It 

has also been considered for the geodynamo  problem  (Glatzmaier and  Roberts 1997, and 

references therein),  the  tidal problem (Miles 1974), equatorial  ocean waves (de Verdihre 

and Schopp 1994) and  studies of internal convection in the  Sun  and  stars  (Brummel et 

al. 1996).  Theoretical  predictions (e.9. Zhang and  Schubert 1995, 1996, and references 

therein) have been  made for Jupiter using this 3D approach that have not yet been 

compared  with  observations. 

The primitive  equations  set the  foundations for atmospheric  dynamics  and for the 
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traditional formulation of geostrophy. They  are  justified  using  scale  analysis of the 

continuity  equation  in  atmospheric layers where the  depth scale  is  comparable to  the 

density scale (e.g. Gill 1982, Pedlosky 1987, and Holton  1992). Shallowness of atmo- 

spheric layers suggests much smaller  vertical than horizontal velocities. Therefore, the 

role of the vertical velocities and accelerations  can be neglected. However, the neglected 

terms  also involve the horizontal  projection of the  planetary  rotation vector. In  the first 

stages of the present  formal  development we include the full planetary  rotation  vector, 

and,  as a consequence, we are required to include the vertical velocity and acceleration. 

Hence, the resulting 3D geostrophic  formulation will include  information  on  vertical 

transport  and waves above the clouds. A discussion  on the sufficiency of using only the 

vertical  projection of  of the  rotation vector was presented by Phillips 1965 but ques- 

tioned by  Veronis  1968. A recent work  by White & Bromley 1995 has  also  questioned 

the validity of the  parameterization of the Coriolis terms in the primitive  equations used 

for global  circulation models of the  Earth’s  atmosphere. Phillips 1965 justified  dropping 

the vertical velocity and acceleration terms  in  the momentum  equation  in  order to pre- 

vent the violation of angular  momentum  transfer  in the  study of shallow atmospheric 

layers. Veronis  1968 argued that  this violation  is of the same  order of magnitude  as 

other neglected terms.  Therefore, shallowness is not  a sufficient reason to require use 

of the primitive  equations.  Furthermore, Veronis noted that  dropping  the horizontal 

component of the  planetary  rotation is responsible for the singularity  in the  traditional 

geostrophic  approximation  at  the  equator.  The physics near the  equator would be ill- 

represented ( e . g .  as  one  approaches the  equator, Taylor-Proudman  columns  aligning 

parallel to  the  rotation vector must become perpendicular  to  the local  vertical, a result 

that is prevented  in the primitive  equations).  The necessity of primitive  equations could 

thus not  be  claimed  against the full 3D equations. In  a reply to Veronis 1968, Phillips 

1968 agreed and gave examples of terrestrial  situations where the horizontal  component 

is unimportant  and  others where it is crucial. 
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The comparative  studies  on  atmospheric models  by Phillips, Veronis, and  White & 

Bromley suggest using geostrophy in  Jupiter as the linearization of the full 3D equa- 

tions for planetary scale diagnostics.  Furthermore, the shallow nature of terrestrial 

atmospheres is not  present  in  Jupiter’s  troposphere which extends over many scale 

heights  without  any solid boundaries that could set a constraint  on  the vertical  motion. 

A diagnostic  comparison of the observations, using this 3D  framework, with  theoret- 

ical predictions based on  this  approach  has not been  tried before in  any  atmospheric 

situation (Yano 1994) and is at  the essence of this  paper. 

We restrict  this work to  the linear  balances  stemming  from the full 3D equations 

and discuss the resulting  hydrostatic  approximation  and  the  thermal wind relations. 

In section  2 the observations and  their  reduction  methods  are described.  Section  3 

presents a scale analysis for Jupiter in  order to justify  the  assumptions used. Section 4 

presents  density  maps as a proxy  for  buoyancy or convection maps. Section 5 develops 

and discusses the 3D versions of geostrophy, its effect on  the  hydrostatic  approximation 

and  on  the  thermal wind, and presents the  results  obtained  after  application  to  our 

IR measurements. Section 5.2 discusses the error involved in neglecting the nonlinear 

terms. Section 6 discusses the Hadley circulation.  Finally,  section  7 discusses the results 

in light of previous  studies and presents  our conclusions. 

2 Observational method 

For application of our 3D geostrophy we have chosen high-quality  middle-infrared  (mid- 

IR)  data acquired at  the NASA Infrared Telescope Facility (IRTF) using the MIRLIN 

mid-IR  camera (Ressler et al. 1994) over  five nights  from June 26 to  July 1, 1996. 

The  data consist of images of Jupiter’s disk taken  through discrete (6X - 0.5 - 1.5pm) 

filters at wavelengths of 13.3, 17.2, 17.9, 18.7, 20.8 and 22.8 pm. At the  time of the 

observations, Jupiter was at opposition and  had  an  apparent  equatorial  diameter of 

47 arc-seconds. The telescope diffraction  limit, at 18.7 pm, is 1.56 arc-seconds. This 
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results  in a spatial resolution  limit of  -4700 km,  or 3.8 degrees of Jovian  longitude, at 

the  sub-earth  point. 

We chose wavelengths that would sample the Jovian spectrum where it is  dominated 

by the collision-induced  opacity of  H2 which is  well mixed throughout  the region we 

are  sampling. For our  temperature retrievals, the Jovian  atmospheric  radiative  proper- 

ties were modeled by an  appropriate combination of  H2-Hz and H2-He collision-induced 

absorption  (Birnbaum et al. 1996). The filter  selection  provides  sensitivity to  temper- 

atures between about 100 and 600 mbar. Normalized weighting functions, showing the 

sensitivity of each wavelength with  pressure,  are shown in  Figure 1. Temperatures were 

derived for four representative levels: 100, 200, 316, and 400 mbar. The vertical  width 

of the weighting  functions define our  vertical  sensitivity. As can  be seen from  Figure 1, 

our  range of vertical  sensitivity is  less than two scale  heights, and  our retrieval levels 

are,  therefore,  not  completely  independent. 

We have not  derived the  temperatures for pressures  greater than 400 mbar,  as  the 

influence of a  cloud of  NH3 particles (e.9 Orton et al. 1982; Gierasch et al. 1986) could 

affect these  pressures, and we are not yet prepared to  separate  the  temperature  and 

opacity fields from each other for large  maps. It is  possible that some of our observed 

400-mbar structure arises  from to NH3 particles. However, the  strong similarities  be- 

tween the morphologies of the  temperature field derived for the 400-mbar pressure level 

and those at lower pressures  suggests that, for these  observations, the  temperature field 

is the  dominant factor at 400 mbar. 

To retrieve the  temperatures from the radiances, we used the nonlinear weighted- 

Chahine  technique  (Chahine 1970) for its ease of implementation and  robustness. Using 

this  technique, the outgoing  radiance spectrum is  computed starting with an  estimate 

of the vertical temperature profile. The vertical temperature profile is then  perturbed 

until  the outgoing  radiance  matches the observed radiances at all  six wavelengths. A 

smoothed average of the Voyager 1 radio  occultation  experiment  results  (Linda1 et al. 
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1981) was used as  the  initial guess for the vertical temperature profile. 

Standard mid-IR  reduction  techniques were  followed to produce  the  individual im- 

ages from the raw data. Weather was  good enough to provide images with high signal- 

to-noise ratios. The effects of  lower signal-to-noise ratio in the  data can  be seen in the 

geostrophic wind shears we derive below, since they rely on  spatial derivatives of the 

data.  Typical images  were characterized by signal-to-noise ratios of  -200, equivalent to 

just  under 0.1 K in  temperature.  The worst images we considered have signal-to-noise 

ratios of about 100, equivalent to  just  under 0.2 K in  temperature.  Data  with lower 

signal-to-noise ratios were not considered. 

While  conditions allowed  for  good signal-to-noise ratios,  the weather was not  photo- 

metric across the whole acquisition  period. Rather  than  attempting  to  calibrate  through 

the variable  conditions, we scaled all  our data  to Voyager IRIS  belt-zone average radi- 

ances. For each image, the Voyager belt  and zone average spectra were  convolved with 

our  spectral filter  functions to create a spectral  radiance for each  filter. For each image 

we calculated the  ratio of the average of 40" of longitude around  the  central  meridian of 

the  Jovian  North  Equatorial Belt (NEB), 6-16' N, to  the Voyager IRIS  spectral average 

of the same region. This procedure was repeated for the  South Tropical Zone (STrZ), 

18-23 " S. The average of these two ratios  produced a calibration scale factor for the 

image. As expected,  our  retrieved  temperatures  are  in very good agreement with  the 

He abundance-corrected  radio  occultation temperature profiles reported by Orton et al. 

1998. While this  method proved convenient and consistent across our data  set,  it could 

introduce  systematic offsets in  the derived temperatures if the NEB/STrZ temperature 

ratio  has changed since the Voyager era, or if Jovian  tropospheric  temperatures have 

experienced a systematic  shift since the Voyager era. 

After calibration, each image  was mapped via cylindrical  projection  onto an even, 

1" x lo, grid,  with  longitudes fixed to  the System I11 rotation  rate. Each map is ac- 

companied by a emission angle  map.  These data, consisting of a radiance  and emission 
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angle pair, for each wavelength, formed the  input for the  temperature retrievals. The 

temperature retrievals were done over all (latitude, longitude)  grid  points whose emis- 

sion angles were  less than 60". Thus, for each full-disk image set of size wavelengths, 

four temperature cylindrical  projection  maps of the visible disk, one at each  pressure 

level, were produced. 

Composite  global temperature maps were then  created by averaging  all of the in- 

dividual  maps  together.  The  resulting  global  composites  are shown in  Figure 2. The 

composite  maps were formed from data taken  as much as  5  days apart. Previous stud- 

ies of the  rotation  rates of the  longitudinal  feature seen in  the  temperature  structure 

(Deming et al. 1989, 1997, Magalhiies et al., 1989, 1990, Orton et al. 1994) report 

rotation  rates of  -10 m s-'. Such  a rotation  rate produces a longitudinal  smearing of 

4300 km ( m  3.5") over our  maximum  time difference of five days. This is comparable 

to  our diffraction-limited spatial resolution of - 4700 km. Examining the overlapping 

longitudinal regions of our data show that  actual  shifts of discrete,  identifiable,  features 

was typically much less than  the smearing size of 3.5". While it is still  possible that 

evolution of the  temperature field could have occurred  within the period  spanned by 

the  data, we did  not  observe  any  such  evolution  above  our noise  level. 

For comparisons to previous work done  with  zonal  mean data, we constructed  the 

zonal  mean of our  four temperature  maps, shown in  Figure 3. These  zonal  means  are 

simply the average value at each latitude, with the  error  bar  the  statistical  standard 

deviation of the values at  a given latitude. Coverage gaps were excluded from the means. 

3 Scale analysis: 

Our  analysis uses the full 3D equations  in  spherical  coordinates (e.9. Holton  1992). 

These  equations  are  understood  as  the Reynolds-like equations  resulting from a  spatial 

average. The averaging scale is  set by the resolution of observations  in  a  similar way as 

numerical  grids  set the resolution scale on  computational models. The  equations  are: 
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0 Equation of state: p = p ( p , T )  In most of this work we will consider the atmo- 

sphere  as an  inert gas of constant  composition and apply: p = RpT/M, 

0 Continuity (in  absence of internal mass sources or sinks): ? (pi?) = 0. 

Also called static  compressibility or the anelastic  approximation (e.g. Ingersoll 81 

Pollard 1982). 

Dv' .+ 1 +  
Dt P 

0 Momentum (neglecting viscous effects): - + 2Rk A v' = - -Op + i j  

0 Heat (for velocities under the speed of sound and if internal  heat fluxes are pos- 

In  the above equations p is the pressure, p is the density, T is temperature, 0 is the 

potential  temperature of a  polytropic  gas ( e . g .  Ingersoll and Pollard  1982), R is the 

gas constant, M, is the mean molecular weight, v' is the velocity, R is the  planetary 

angular velocity, i j  is the gravity  acceleration  vector, J (p/ps)R/CpDQ/Dt is the  rate 

of heating  per  unit mass owing to  radiation, conduction and  latent  heat  release,  and C, is 

the specific heat at  constant pressure.  Our spatial variables  are ( x ,  y, z )  with x being the 

eastward, y the  northward,  and z the vertical  directions. The velocities are (u,  v,   w)  that  

relate  to spherical  coordinates (Zp, Zo, E',) by v' = uz+ v i +  we', = uZp + v(-G'e), +we',. 

The horizontal  derivatives  are  along  constant  log-pressure  surfaces. The  latitude is 

X = n/2 - 8, where 8 is the  colatitude.  The  direction of the  rotation axis is defined as 

= e', sin X + ;cos X and  the related  axial  variable  is 2. 
'COMPONENTS OF THE INVISCID MOMENTUM EQUATION: 

If gravity is radial and v' E (u, w ,  w) 

- +  w-+v-+u-+-  w +  2 0 +  at ( :z :y ax a ") r ( *-usinX= -- P aY 
1 a P  

+ u c o s x =  - - - g  1 aP 
r cos X P 3.z 
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This  system of coupled nonlinear  equations is too complex for direct use in diag- 

nostics.  Accurate  diagnostics would require fully 3-dimensional codes in  a  spherical 

geometry. However, significant  progress  can be achieved by making  assumptions which 

result  in  simplifications of the equations. Two major  basic  assumptions,  hydrostatic and 

geostrophic  balance, have broad  application.  They  are  crucial for IR-data-based  diag- 

nostic  methods.  In  order  to  justify  the  validity of both  assumptions for Jupiter, a scale 

analysis  is  needed. Most of the physical values needed for a  detailed scale analysis or 

for a  parameterization of the dynamical  equations are unknown  above the Jovian  cloud 

layers. However, one  can estimate  upper limits for the different dynamical  variables. 

This will provide a justification for the approximations discussed in  this work. 

Observations make sub-sonic transport velocities a reasonable  assumption  above the 

clouds. We therefore  assume that  thermodynamic  adjustment  within each gas  parcel 

occurs  faster than dynamical transport. From this  and  the fact that phase  transitions 

are  not observed to play an  important role, we expect the perfect  gas law to hold as  the 

equation of state  and  the corresponding  heat  equation will be assumed to  be governed 

by Newtonian cooling. For the vertical  scale that we are  considering,  observations of 

the composition make of a  constant M, a reasonable  approximation. 

Since the diagnostics  in  section 5 are based  on  a  linear  approximation of the mo- 

mentum  equation which is different from the generally  accepted, it is necessary to see 

if the full Coriolis terms  are needed when nonlinear terms  are neglected. Further,  at 

small  velocities,  a  linear  approximation is reasonable. But Jovian  winds  can  reach  high 

velocities that increase the  magnitude of the nonlinear  corrections.  These  corrections 

constrain  the validity of a  linear  approach. To gauge the limits of  3D linear  results, we 

used unrealistically  high  horizontal velocities to  compute  upper limits for the nonlinear 

terms  and compare them  with  the Coriolis term  peculiar to  our approach. 

Table I shows upper  limit  estimates for the momentum  equation.  They were obtained 

considering  a  three-dimensional  sub-sonic velocity. The horizontal  components U ,  V, 
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were taken  as half the  adiabatic  speed of sound ( c  = d y m  - 700ms"). Using the 

continuity  equation  on  a  predominantly  zonal flow, W - UAz/Az - 2.5ms-l.  These 

are improbably high values, and  thus  appropriate for an upper  limit to  the nonlinear 

terms.  Further,  a requirement for using averaged Reynolds  equations  to  analyze  the 

data is that  the described fields are  smoothly  varying  in  space and time  within  our 

measurement  resolution. If jumps were present, the limit defining the  spatial derivatives 

would not  exist. We chose Az N Ay - 4700 km,  the  spatial resolution  set by the 

observations, for the  spatial derivatives of our averaged Reynolds  equations. The vertical 

resolution of our weighting functions  sets  our choice of AZ - 25 km. If the velocity 

changed completely  within one grid at these spatial resolution values, it would violate 

the smoothness  required by diagnostics based on  a  continuum  model.  Such velocity 

jumps  are not  observed. Hence, the chosen combination of  low values for the  spatial 

increments  together  with  permitting  large velocity jumps artificially  inflates the role of 

the advection  terms  in  our  scale  analysis. This serves the goal of estimating  upper  limits 

to  the nonlinear  terms  in  a situation unfavorable to  our linear  analysis.  Table I also 

includes  upper  limits for the  terms in the heat  equation. T, is the  radiative equilibrium 

temperature assumed  constant  at  constant  pressure levels  (following e.9. Gierasch et 

al. 1986), and rr - 108s  (ibid.) is the radiative  time  constant. 

The  upper limit  estimates of Table I make an empirical case for the adequacy of full 

3D geostrophically  balanced models of Jupiter. Such  balance  holds when the Rossby 

number Ro I(.'. f?)v'l/(2QI.'l) - AU/2QAx - 10-1 is small,  as is the case here, and 

on spatial  structures bigger than  the Rossby radius of deformation LR G NAz/2Q sin X 

(N being the Brunt-Vaisala  frequency). 

A similar discussion to de Verdikre & Schopp's 1994 for the ocean, or White & 

Bromley's 1995 for the  Earth's atmosphere,  can  be  extended to  the Jovian values of 

our table2. Remembering that a low Ro reigns  in Jupiter  and  that  this implies that 

'The  most  unfavorable  scenario  occurs if the horizontal velocities on Table I were valid, with a vertical velocity 
of only about 10 cm s-'. This would affect the comparison of the advection versus the Coriolis term in the zonal 
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the relative  vorticity ( is ( << 2f2, we find that even with  our  unrealistic,  unfavorable 

starting  point,  the linear Coriolis terms  dominate over the nonlinear  corrections for the 

large  scale  motion. 

Finally,  our temperature maps  are an average of measurements  taken over several 

days. This  time scale  filters away fast  fluctuations  and is appropriate for detecting 

geostrophic effects. The  time scale  also  sets the order of magnitude for the  time deriva- 

tive terms so that, m/at - ATlAt N 1/50000 K s-l, AU/At N AV/At - AW/At - 
5 . m s - ~  which are significantly  smaller than  the dominant  terms. 

4 Hydrostatic  balance,  density  maps  and buoyancy: 

This section discusses the effects of pressure  deviations from hydrostatic  balance that are 

caused by density changes due  to  diabatic heating. De Verdihre and Schopp 1994 stated 

that, even in an  adiabatic spherical flow, the  appropriate  hydrostatic  approximation dif- 

fers from the classical  form.  Their  claim  highlights that a justification of the  hydrostatic 

approximation  in  a moving atmosphere  using only fluid dynamical  principles is not  clear. 

Most frequent proofs require  a shallow atmosphere, which  is not the case for the major 

planets. However, the  estimates shown in  Table I make clear that  neither advective, cy- 

clostrophic nor Coriolis accelerations  can  approach g. In  general  one  can state  that if the 

planetary  Froude  number E 2Uf2/g << 1, only the vertical  pressure  gradient  can bal- 

ance  gravity and, hence, hydrostatic  balance  is  a good approximation on Jupiter.  This 

criterion  does  not  require shallowness and  depends only on the  magnitude of the typical 

velocity U ,  the acceleration g, and  the  rotation frequency R. This Froude  number allows 

the  introduction of a perturbative approach: p ( z ,  y, z )  = p h ( z ) + ~ p ' ( z ,  y, z)+O(c2)  where 

@ = -pg ,  is the  hydrostatic  balance  solution, p'/ph N 1 and  the non-dimensional  per- 

turbation  parameter,  the Froude  number,  is  in Jupiter E - lov3 > ERO 2 E ~ .  The eo 

equation.  The zonal Coriolis term, f w ,  becomes N m s-', which is %ne order of magnitude smaller than our 
upper limit for the full advection term. Yet, zonal advection is given as (5 .  VU) N U z  + V g .  This nonlinear term 
compares to  both Coriolis terms only if the zonal wind is highly non-zonal E, or if V is very big. Both possibilities 
are  contradicted by the observations. 
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. I  

solution to  the  fundamental equations is the one that is in  exact  hydrostatic  balance. 

Following the Bjerkness-Jeffreys  theorem  (Houghton  1986),  this  solution is a barotropic 

steady  state with zero velocity. To the lowest order,  the  hydrostatic  pressure, p h ,  de- 

pends only on z .  The deviations from hydrostatic  balance  are  the  pressure  anomalies 

p‘. We can  also define T = Th(z)  + ET’(Z, y, z )  + O(e2) ,  where Th is defined by the 

basic temperature profile at which hydrostatic  balance  (no buoyancy) holds.  Jupiter’s 

atmosphere  is  in  a  diabatic situation where uniform  internal  heating  largely  dominates 

over latitudinal effects due to solar  heating ( e . g .  Ingersoll & Porco 1978, Gierasch  et 

al.  1986), we therefore  approximate Th(z) Te(z) ,  where Te is the  radiative equilib- 

rium  temperature  and  the  bar is  used to  indicate horizontal  averaging  on  a  constant 

pressure  surface. Latitudinal  temperature changes enter  in  the higher order T‘ term. 

T e  is  derived  from  our  measurements. In  an ideal situation one would  like to include 

the  latitudinal dependence of Te, neglecting it  can affect planetary scale conclusions. 

In  this  paper we are concerned with  comparisons of the observed temperatures  with 

neighboring  areas. As a consequence the resulting  picture is valid  even at global  scale, 

although some caution  has  to be  taken. 

The  temperatures,  retrieved  along  isobaric  surfaces from the  IR  data,  are used to  map 

the deviations from Te. Temperature  deviations reflect density  deviations.  Therefore, 

the  temperature fluctuations  in the IR  maps  can  be used to infer density  maps.  One  can 

take the  equation of state for p = p ( p ,  T )  as given  by the ideal  gas law. Since we are inter- 

ested  in  a  formulation that includes  dynamical states  that may be slightly  out of thermo- 

dynamic  equilibrium, a more general  result is to take the first  approximation of the Tay- 

lor series  around ph(z)  = p ( p h , T e ) ,  p(p,T) = p h  [I - QIT(T - T e )  -I- ~ ( p  - p h )  + O(e2) ] .  

In  this expression, QT = -1 L!@ is the coefficient of thermal  expansion, and IC = 
f ( g)T is the coefficient of isothermal compressibility. In  an ideal  gas  in  equilibrium 

CXT = 1/T, IC = l/p. An exact  estimate of the density field requires  simultaneous mea- 

surements of the  temperature  and  the pressure fields. The advantage of IR maps is 

p 
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that  they correspond to  constant pressure  surfaces  up to  the measurement  resolution. 

As a consequence, only the  thermal expansion term is  significant  in  deriving  density 

maps  directly  from the  temperature maps.  When the dynamical region covers many 

scale  heights,  variations  in  potential temperature should  be used instead of tempera- 

ture. Since the observed mixing ratio is approximately  constant  within  these  isobars, 

the  potential  temperature  variations  are  proportional  to  temperature  variations  and an 

analysis of buoyancy based on temperature is justified.  Figures 4a-4d  show the normal- 

ized density  anomalies p'/ph = ( p  - p h ) / p h  to order O(e2) .  These  density  deviations 

from the basic state were obtained  in  the regions between 60"N and  60"s.  The gray 

levels represent arbitrary  units. Dark  areas  correspond  to light gas  parcels,  bright  areas 

correspond to dense  gas, and mid-gray levels correspond to  neutrally buoyant  gas. 

Several  interpretations of these figures are  possible. The first interpretation is that 

cold areas  do  not reflect the detection of cold kinetic temperatures  at a constant pres- 

sure level but,  rather,  they reflect the increase of atmospheric  opacity  caused by clouds 

and hazes forming  in upwellings of deeper gas instead of temperatures on isobars. Such 

an  interpretation  depends on the independence of the  temperature retrieval  from  inter- 

ference by clouds. In  this  interpretation, dense  gas  parcels  are  signatures of upwellings 

from  deeper levels while light  gas  parcels  correspond to downwellings. 

However, if  we can trust  that  the retrieved  temperatures  are at a given pressure 

level, then  there is a  group of Jovian  atmospheric  models that predict that  the large 

scale motion is driven by deep convection and can  benefit from the buoyancy maps  (full 

3D overturning models based  on Busse 1976; primitive  equation  models of Hadley cir- 

culation  such as Condie and Rhines 1994; or  without  overturning like Williams  1996). 

Convection  models have used the Oberbeck-Boussinesq  approximation that defines the 

buoyancy force b = -gp' as proportional  to  the density  anomaly between a fluid parcel 

and  its surroundings. The maps 4a-4d show therefore regions of possible convective 

transport.  The predictions of deep convection models were obtained  assuming  a  basic 
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density profile that is a linear  function of height but which is  constant  in  the continu- 

ity  equation.  Both  assumptions have raised much criticism, but  there  are also results 

that  support  the applicability of Oberbeck-Boussinesq models. Addressing the effects 

of static compressibility, Tritton 1977 and Ingersoll & Pollard 1982  showed that  the 

Oberbeck-Boussinesq equation is still a realistic  momentum  equation for Jupiter if the 

temperature is understood  as  the  potential  temperature.  Authors of deep convection 

models of Jupiter have repeatedly  afterwards  mentioned this  property (e.g.  Busse 1983). 

A second source of criticism, is a constant  density profile in the continuity  equation ( i .  e. 

the  approximation that V . (pv') = p q  v' = 0). This  assumption remained  question- 

able for Jupiter since the motion  occurs over many density scale heights. A simple 

change into pressure  coordinates (e.g. Holton 1992, 53.1) can overcome this problem. 

When  the vertical  coordinate is p instead of z ,  the  anelastic continuity  equation becomes 

ap v' = 0, and  the vertical velocity is substituted by a new variable w = -phgW The 

realistic  equations in pressure  coordinates are  thus isomorphic to  the  momentum  and 

continuity  equations of Oberbeck-Boussinesq convection models  where the variables T ,  

z ,  and w were interpreted  as 0, p ,  and w. This isomorphism between the continu- 

ity and  momentum  equations of Oberbeck-Boussinesq  models and  anelastic models, is 

mentioned  again  in our Appendix  and makes us think  that  the conclusions of Oberbeck- 

Boussinesq models  may apply  on  Jupiter. 

+ 

The general  analysis of the role of non-Oberbeck-Boussinesq effects provided by Trit- 

ton 1977 advanced that when the Oberbeck-Boussinesq approximation fails, effects like 

variable viscosity and heat  capacity, viscous heating,  the effect of the  dynamic pressure 

p' on the buoyancy force and  extra effects in  the  heat  equation have the  same  importance 

as  the non-Oberbeck-Boussinesq terms. Non-Oberbeck-Boussinesq convection studies 

have only been  able to address  these effects partially  without  providing  either a very 

different or as complete a picture as Oberbeck-Boussinesq  models (see discussion by 

Yano  1994 and references therein). 
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In convection models where the dynamics  are  driven by buoyancy a  colder,  denser, 

parcel of gas will fall, while warming and compressing, and similarly a warmer,  lighter, 

parcel of gas will rise, while cooling and expanding,  until  each reaches a level where 

they  are  surrounded by parcels of the same  density. This mechanism involves vertical 

advection, which is  small  enough to be compatible  with  a  relative  deviation of 5 g - 
from hydrostatic  balance  (as  can  be seen from Table I). In  these models where buoyancy 

can  cause  overturning,  updrafts would be  located  in the  dark  areas of Figures 4a-4d and 

downdrafts  in the brighter  areas. 

A different type of model used for Jupiter  are  adiabatic shallow water models (Dowl- 

ing and Ingersoll 1989, Cho and Polvani  1996).  They allow  for small  deviations from 

hydrostatic  balance which reflect vertical transport.  In shallow water  models, the thick- 

ness of a density  surface is computed over a  rigid bottom  boundary  (absent  in  Jupiter), 

barotropicity over the layer is assumed, and  the continuity  equation  is  imposed only on 

the horizontal velocities. Barotropicity is a  strong  assumption.  It  has  been proven ( e . g .  

Dritschel & de la Torre JuArez 1996, Dritschel  et  al. 1999) that  the vertical homogene- 

ity of vortical  atmospheric flows  is broken when their horizontal size L is equal  or less 

than half their  height h rescaled as Nh/ f  ( N  lOOh in  Jupiter). For example, shallow 

water  models of the biggest vortex, the  Great Red Spot, can  be  justified to less that 

10 scale heights. This is only 0.3% of Jupiter’s  radius. However, these models are also 

interesting  within  the  range of our  measurements. In  this  approach,  density  anomalies 

are  small,  and  overturning is not allowed. Only  small  vertical velocities are possible, 

causing  a  deformation of otherwise  horizontal  stratification  surfaces.  Their ultimate sig- 

nature  in  IR  data would be  qualitatively  indistinguishable from overturning convection. 

In  these shallow water  models, diabatic effects due  to  radiation,  heat  release,  or con- 

duction  do not  determine  the dynamics, hence the motion will occur  within  isentropic 

surfaces. Within  the limits of the measurement  accuracy,  IR  observations  provide the 

height difference of the isentropic  surfaces from the isobaric  surfaces.  These  surfaces 
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are  bent  with  respect to  the isobars following the  temperature deviations shown in  the 

buoyancy maps. Since horizontal  motion follows the deformations of these  isentropic 

surfaces and cold gas  anomalies reflect a downward deformation of the density  surface, 

an isentropic flow would be deflected and would acquire  a  negative  vertical velocity. 

On the  other  hand, warmer areas could arise from an upward deformation  as  a  result 

of vertical transport of gas from deeper,  warmer, levels and horizontal flows can  be 

deflected upwards. 

All these  interpretations  can  imply  vertical  transport.  The conclusions from the 

Oberbeck-Boussinesq, shallow water and motion  on  isentrope  interpretations  are  in 

contradiction  with the conclusions from the opacity  interpretation  and  with  the  in- 

terpretation stemming from the use of the heat  equation  addressed  in  section 6. In 

the  latter two cases cold temperatures  can  be  associated  with  updrafts  and  and warm 

temperatures  can  be  associated  with  downdrafts. 

5 Planetary Scale Geostrophic balance: 

Another important model of the large scale banded structure of Jupiter is based on 

the assumption that  diabatic effects are not important enough to  distort  the  structure 

that would be  obtained  in  geostrophic  balance  (Rhines 1975). One  shortcoming of 

this  model is the singularity of traditional geostrophy at  the  equator. de Verdikre & 

Schopp 1944 discussed the shallow incompressible case that applies to oceans while 

White & Bromley 1995 did  not discussed geostrophy. In  this  section,  compressible 

(non-Oberbeck-Boussinesq) 3D geostrophy is discussed and  it is shown that  it  shares 

the main  advantages of the shallow incompressible case. As an immediate consequence, 

the Rhines  scenario  gains more plausibility. 
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5.1 The linear  approximation: 

We  now discuss the formulation of linear 3D geostrophy and  its differences with  the 

traditional results. This section  sets the basis for the discussion of the nonlinear terms in 

subsection 5.2 and for the  thermal wind relations  in  subsection 5.3 and  in  the Appendix. 

Geostrophic  balance is defined as  the balance between the Coriolis forces and  the 

pressure  gradient  in the absence of buoyancy forces: 

-up1 + O(€  . Ro, €2) 
I - .  
P 

It is valid to  the order of the neglected advection  terms - O(e.  Ro).  The only ‘peculiar’ 

aspect  in the present work  is that t;‘ is the direction of the  rotation axis  instead of the 

local  vertical (following, for example,  Chandrasekhar 1961; Busse 1976; de Verdikre 

and Schopp  1994). Standard conventions are followed otherwise. The density  includes 

the  non-hydrostatic  contributions  except  in  the forcing term ’. The  total velocity is 

v’= ~v’~+O(e.Ro, e2) = e(ug, w9, wg)+O(e.Ro, e2). The second independent perturbation 

parameter  that  appears here is Bo. This  parameter  depends on the  amplitude of the 

solution for Cg, and  an assessment of its  magnitude first  requires  solving the linear 

relation (1). From Table I, one  can  reasonably  expect Ro < 10-l. 

In  its  traditional form,  geostrophic  balance  also  justifies the use of the “classical 

hydrostatic  approximation”: 2 - p g  = €2 = 0. This  equation is a  solvability con- 

dition, i. e. it is necessary in  order to allow  for an exact  solution to expression (1). 

The gradient of the pressure  anomaly  in the right  side of (1) has  to be  perpendic- 

ular to  the  rotation vector IE‘ for the  identity  to be solvable. In  the  traditional case 

t;‘ is the local  vertical  (hence the justification of the classical hydrostatic  approxima- 

tion). However, in  our  case, where t;‘ is the  rotation axis, the solvability  condition (2.e. 

3This is the classical  approximation.  In  a  proper  sense,  making 9 - ?j E EY implies that  the pressure  anomaly 
p l  relates to p’ and p’ from  section 4 as $pl E $p‘ - p’g’. Non-hydrostatic  buoyancy  forces  are  absent  when 
p = P h  -k P’ = p h  -k O(E ’ Ro) and hence p l  = p’ but we are keeping  a  non-buoyant  density. 
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1 apl  sin X apl  COS X apl  

P az P a x  P aY 
" =" +-- = O(E . Ro, E2) 

In  the  traditional formulation, the role of Z is played by x in  relation (2), which then 

reduces to  the classical condition 2 = O ( E  + Ro, E ~ ) .  Therefore, (2) is the correct 

hydrostatic  approximation  in  a  spherical geometry. It has  been shown (de VerdiGre and 

Schopp 1994) for high Rossby numbers that  the nonlinear  vorticity  terms do not  break 

this  condition. A related  result  has  been  obtained for the Jovian  gravity  equipotential 

surfaces  in the deeper levels (Hubbard  1998). 

To first  order  in E, the solution to  the linear  equation (1) is  given  by: 

As in  the classical geostrophic  approximation,  this  solution  can  also  include  any  arbi- 

trary function  in the direction of Z. A detailed  analysis of this  indeterminacy  is given in 

the Appendix, where it is shown that it will not influence the 3D thermal wind relations. 

In  the following sections we will assume that  this  arbitrary function is smaller than  the 

other neglected terms.  The expression for the zonal wind can  take two forms. If the 

hydrostatic  approximation is  used in the non-classical form (2), the expression for the 

zonal wind is the  traditional result ug = -- h. ay Note, however, that  the singu- 

larity  at  the  equator is  now prevented by the new hydrostatic  approximation, which 

assures that, in  geostrophic  balance, the  latitudinal pressure  gradient  must  be zero at 

the  equator  (since sinX = 0). Applying the  hydrostatic  approximation  in  its classical 

formulation  leads to ug = -&Ah which differs strongly from the  traditional result. 

The classical hydrostatic  approximation would violate the solvability  condition (2), and 

therefore (3) can be  a solution only if a p l / a y  = 0. However its use is defended by White 

2% aY 
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& Bromley 1995 as  causing a smaller  error  in  global scale studies  than  taking for the 

local vertical. A discussion of this approach for deriving the  thermal wind is  given in 

section 5.3. For both forms of the  hydrostatic  approximation,  the singularity  problem 

of (3) at  the  equator is absent  since the condition apl/ay = 0 always holds  there. 

Independently of the formulation used for the  hydrostatic  approximation,  several 

properties become apparent from (3). First,  it is straightforward to check that Gg 

fulfills the continuity  equation.  Therefore, even if the vertical velocity terms had  been 

neglected a priori, using the continuity  equation  on the expression for the horizontal 

velocities would yield the same  vertical velocity as (3). This is an advantage over 

the  traditional  approximation where continuity  does  not hold unless X is a  constant. 

Second, the meridional and  the vertical  geostrophic velocities are of the same  order 

of magnitude.  This  result is consistent  with  observations at  the cloud level, where 

the meridional velocities are  intermittent  in  time  and localized in  space  (Vasavada et 

al. 1998). Evidence  has  been given (e.g. Showman and Ingersoll 1998) that such a 

localization of the vertical velocities is present  in the form of smooth upwellings and 

downwellings. As a consequence,  in the present  analysis,  vertical velocities will not be 

ruled out a priori if meridional velocities are  included. Third,  a consequence of (2) is 

that,  at equatorial  latitudes where sinX = 0, the meridional  pressure  gradient  must  be 

zero, and, therefore,  zonal flows are  not  compatible  with  a  linear  geostrophic situation. 

The fact that nonzero  zonal  winds  are the observed rule at  the  equatorial clouds could 

be  a  signature of either  strong  ageostrophic effects or a strong  decoupling  between the 

atmosphere  and  the  deep  interior  rotation, which defines the  system of reference with 

respect to which the zonal  winds are usually given. This decoupling is not  a new  nor an 

infrequent  idea. The Galileo probe  detected an  abrupt change  in the vertical  gradient of 

the horizontal velocity at 5 bar  depth (Atkinson  et  al. 1998). One could speculate  with 

this level as  being a dynamical  analog of the  terrestrial solid surface, but,  unfortunately, 

the  rotation period of this  deeper level  is  known only at  the  probe  site. 
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5.2 Higher orders terms: 

The geostrophic  equations are a linear  approximation,  both  in the  traditional  and  in 

the 3D model. Their accuracy is limited by the  amplitude of the nonlinear terms which, 

themselves,  depend on  the solution. Perturbative  arguments  can  be used to  estimate 

the  magnitude of the higher order terms  in  the  momentum  equation. 

Expression (3) for the geostrophic velocity can  be used to  estimate  the advection 

term. Let us define v' = c(Gg + Roca) (where v', is the ageostrophic  contribution to  the 

total velocity), we can  write the nonlinear  advection term as: 

From our scale analysis, Ro is 5 lo-'. Therefore, the  main  contribution to advection is 

given by the geostrophic velocity and is of order c2. Using (3) with  the measurements 

in  hand, one can now understand  the existing evidence of why linear models  have been 

so successful at  the scale of the measurement  resolution: the  dominant horizontal  tem- 

perature  gradients  are  latitudinal,  thus so are  the  gradients of the pressure anomalies. 

Therefore the  dominant geostrophic velocity component will be zonal. The advection 

generated by ug is dominated by G g .  Vug = ug % + vg % + wg 2. Using expression (3) 

vg - wg, and  the  small zonal gradients of the measured temperature imply v9, wg << ug. 

These  results coincide with  the  estimates based on  the heat  equation,  and  continuity. 

Hence, the  dominant zonal advection term goes as 2 - ( g )  << 8T - ug. Advec- 

tion will then  be significantly smaller than  the  upper  limits  in Table I. This final  result 

supports  the  assumption  already derived that Ro << 1 for the real  geostrophic winds 

and  that,  as a result, large scale zonal advection is a higher-order effect than  the zonal 

Coriolis component caused by the vertical velocity. 

+ 

24 



5.3 Thermal wind equation: 

In  order to evaluate the geostrophic velocity field using (3), independent  simultaneous 

measurements of 3D pressure and density profiles are needed to order E, which is the or- 

der of the velocities. Such  measurements are not  simple to  obtain from  remote  sensing. 

Geostrophic  balance is therefore  frequently  applied  in the form of the  thermal wind  rela- 

tions, which are  a direct consequence of the linear  geostrophic  balance  condition and  the 

hydrostatic  approximation. In  the  traditional geostrophic  approximation,  the  thermal 

wind relations are given as a function of temperature. Alternately, the  thermal wind 

relations  stemming  from the full 3D anelastic  equations have not  been  presented before 

(for Oberbeck-Boussinesq  fluids see Busse 1978;  for a homogeneous fluid see de Verdikre 

& Schopp 1994;  for a  purely  zonal flow in Jupiter see Ingersoll and Pollard  1982).  Our 

goal is to formulate the 3D thermal wind relations  as  a  function of temperature only. 

The full 3D thermal wind  equations  using  the new hydrostatic  approximation (2) do 

not overcome the requirement of independently  measuring two thermodynamic  quan- 

tities (e.g. pressure and  temperature)  and  are therefore  presented  in the Appendix. 

Although  they are consistent  with the order of our perturbation analysis, one needs 

one extra  approximation  to make some progress. This  assumption involves using the 

classical  hydrostatic  approximation. 

The classical derivation  process of the  thermal wind relations are applied to  (3) (fol- 

lowing Holton 1992, pp. 74-75), using the classical  hydrostatic  approximation 9 = 0 

(accurate only to order eo): The  partial derivatives  along the horizontal are taken  in 

directions  perpendicular  to  the  pressure  gradient  (i.e. % = and = *). Dif- 

ferentiating  relation  (3)  with  respect  to  pressure  and  multiplying  the  result by pressure 

yields: 

aY 
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Where z = Hz* = -Hln (p /po ) ,  with H = RTh/g being the pressure scale-height. 

The reason why the  hydrostatic  approximation  enters  to order eo is better seen using 

the classical derivation in  terms of the geopotential a, where @ = -1 = -E. In 

terms of a, the geostrophic velocities are given as ug - -@ and vg - where the 

proportionality  factor is l/f l / 2 n  sin X in  the  traditional case, and  either  sin X/2R 

or cos X/2R in our new approach.  Next,  the following permutations  are  applied  on  the 

horizontal derivatives: 

a P  P 

a Y  

and 

(wg follows a similar  procedure to  vg.)  The previous  derivative  permutations  require that 

f remains  constant  and  that a p / a x  = a p / d y  = 0. The first condition is reasonable when 

regions of small  horizontal  extent are described. The second condition is compatible 

with (2) only if d p / d z  = d p / d y  = 0, which  was  shown in section (4) to  be justifiable 

only to order E'. Expression A3 in the  Appendix describes the result  obtained when 

terms e1 are kept  during  the derivation giving rise to horizontal  pressure  derivative 

terms.  Expressions (4) provide the vertical derivatives of the vertical velocity allowing 

a direct  application to observational data  and a  comparison  with  previous  results (e.g. 

Gierasch et al. 1986). 

As in section 5.1, a connection  can be made with  the  traditional result if (2) is used 

in (3) to evaluate  the geostrophic wind Cg to order The  traditional  identity % = 
- 2nsifXMT ( g ) p  is recovered. This expression is of higher order of approximation  than 
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the zonal  component  in (4) because the  hydrostatic  approximation  enters  here at order 

d in (3), although  it  remains of order eo in the  step  that allows the  permutation of 

the derivatives.  Despite the similarity  with the  traditional  result,  the singularity at  the 

equator  remains  absent  as discussed in  section 5.1. This last  condition  holds  in  our 

measurements  within the  error  bars. Some deviations may arise  from  local effects that 

break  geostrophy, and  they  cannot  be  excluded. 

Figures  5a-5d,  6a-6d, 7a-7d and 8a-8d show the  results of applying (4) to our data. 

In  Figures  5a-5d, the more familiar  result of the zonally averaged thermal wind is 

presented. The  results  with  the classical  hydrostatic  approximation  are  presented  as 

closed circles. Applying the new approximation (2) in (3) leads to  the same  formula 

as  in  Gierasch et al. 1986 and is shown as  open  squares. The classical  hydrostatic 

approximation gives rise to much lower values,  implying  larger  vertical depth scales for 

decay than  reported by Gierasch et al. 1986. Banfield et  al. 1996, in an analysis of 

comet Shoemaker-Levy  9  impact  debris,  also favored larger  vertical  scales, and  thus 

smaller wind shears. However, the Banfield results average over a considerable  vertical 

range well into Jupiter’s  stratosphere while we are confined to  the  upper  troposphere.  It 

is difficult to reconcile these different measurements,  particularly given that  the  results 

from the Galileo probe  (Atkinson et  al. 1998) show considerable  variability  in the wind 

shears  with  height. 

Figures  6 - 8 present the maps for each of the  three  thermal wind  components. For 

the sake of consistency  with the eo level of approximation needed to  obtain (4) we used 

the classical  hydrostatic  approximation  on  Figures  6a-6d. We are interested  in  obtaining 

qualitative  information about  the sign of the vertical  derivative which does  not  change 

if either  hydrostatic  approximation is used. Figures 7a-7d and, more in particular, 

8a-8d present the  results where our  diagnostic  method differs substantially from any 

previous work.  All of the figures use the same  scaling to  facilitate  the comparison 

of relative  amplitudes.  Banded  structures  are  apparent  in  the  zonal  and  the  vertical 
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winds at most latitudes. Meridional  winds appear  rather  constant  with height. Vertical 

gradients of the vertical wind  reflect the existence of updrafts  and downdrafts. In order 

to  determine  the sign of the vertical  motion, one needs to integrate  the  thermal wind. 

This requires knowledge of the wind map  at a pressure level to which IR is sensitive, 

but  this is not available. One could assume the cloud-derived zonal wind speeds for the 

basis of the  integration of the zonal component of the  thermal wind. However, the large 

vertical  gradients  in  the wind  field at  the Galileo probe  site  (Atkinson et al. 1998) 

call the validity of this  assumption  into  question. Some qualitative  information  on  the 

sign is gained by comparing  with the density  maps of Figures 4a-4d that show  where 

buoyancy favors each sign of vertical transport. 

6 Heat equation: residual  vertical transport: 

In  this section, the zonal mean of the  heat  equation is used to diagnose the residual 

circulation across different latitudes  and  at different heights following the same  approach 

as  Gierasch et  al. 1986.  If  we take  the transformed  Eulerian  mean  equations  (Holton 

1992), the heat  equation  takes  the form 

dO T e -  < T  > 
<w>*.= 

dz “r 

which can  be  addressed with  our  data.  Where  the residual  vertical velocity is defined 

on an ideal gas as < w >*-< w > +&a ( v ’TN-~) .  The brackets  represent zonally 

averaged variables, and  the  total meridional velocity is w -< w > +w‘. The residual 

vertical velocity represents the  part of the mean  vertical velocity whose contribution 

to  adiabatic  temperature change is not canceled by the  eddy  heat flux divergence. If 

eddy  heat  transport is very small,  the residual  vertical velocity is the zonal mean of 

the vertical velocity. Hadley circulation models that have been  advanced for the Jovian 

troposphere  (Condie  and  Rhines 1994) thus benefit from  such zonal averages. The 

results  presented below map  the possible signatures of Jovian Hadley cells. 

H aY 
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From radio  occultation data (Linda1 et al. 1981) and direct  measurement (Seiff et al. 

1998), the vertical  gradient of the  potential  temperature can  be  assumed to be  nearly 

a  constant  in  the  upper  troposphere. Using the sign of this  gradient and < T > from 

our data, zonal averages of < w >* were determined and  are shown for different heights 

in  Figures  9a-9d. We have chosen a T e  independent of latitude, defined as the mean 

temperature of each pressure level, following the  arguments of Gierasch et al. 1986. 

Inclusion of latitude dependence  in T e  would be  desirable to examine  global  scale phe- 

nomena. We have not  done it for  two reasons. First, our temperature maps  exclude 

the polar regions leaving a  gap  in  our coverage, although  polar  tropospheric  tempera- 

tures  are  not  expected  to  be very different from the rest of the  planet (Ingersoll et al. 

1976). Secondly, it is unclear  what would constitute  a good quantitative model for the 

latitudinal dependence of T, and whether  such a model would introduce more errors 

than simply  assuming  a  constant Te. Conrath et al. 1990 concluded that  the  annual 

mean  value of T e  is only weakly dependent  on latitude  at all  pressure levels. Thus any 

latitude dependence would be driven by shorter-time  scale  phenomena such as seasonal 

changes in  solar  insolation, whose  effects on Te are poorly  understood. However, a 

qualitative  discussion is still  possible.  Our temperature maps  exhibit  a  North-South 

asymmetry  in  their  higher  latitude  mean  temperatures which  is  likely attributable  to 

such seasonal effects. If the observed temperature asymmetry  exists  with  similar  lati- 

tude  structure in Te, then North-South  asymmetries  in the residual  vertical transports 

would be reduced. The sign of the  potential  temperature gradient  implies that, in  the 

zonal  mean and  within our  measurement  resolution, cold latitudes  can correspond to 

updrafts while warm latitudes correspond to downdrafts. This  interpretation is due to 

the fact that horizontal  heat  advection is not  included. The  heat  transport required 

to balance  horizontal temperature gradients  can  occur only along  vertical gas columns. 

The resulting conclusion would be that  the  transport occurs  with an average of the 

vertical velocity which is  opposite to  the buoyancy arguments. 
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Several effects are discernible  in  Figures 9a-9d. First, a North-South  hemispheric 

asymmetry  appears to influence the vertical velocities pole-ward of about f30" .  This 

asymmetry is consistent with a seasonal effect: The  data were taken  during  winter  in 

the  northern hemisphere. Second, an inversion of the vertical velocity appears  to  take 

place between 100 and 400 mbar  at  the  northern  and  southern  limits of our coverage. 

Third, in the deeper levels, the role of vertical transport decays while moving  away 

from the equator. Above 200 mbar, higher latitudes show the larger role of the vertical 

transport.  The  results  at 316 and 400 mbar show  downwelling in  the  North limit and 

upwelling in the  South which could be a signature of pole-to-pole circulation.  Finally, 

the  results suggest that  Jupiter may have at least five  Hadley cells. 

7 Summary  and conclusions: 

This work incorporates new theoretical and observational  results. On  the  theoretical 

side,  linear  geostrophy and  the  hydrostatic  approximation  as derived  from the full 3D 

equations for atmospheric flow  have been  applied for the first time on  diagnostics of 

Jupiter's  upper  troposphere.  The development of a 3D geostrophic  formulation for 

atmospheric  diagnostics has resulted  in a new set of thermal wind relations. They 

have been  presented in geometric  coordinates  (and  in  isobaric  form  in  the  Appendix). 

The connections between the  traditional  and  the global scale formulation have been 

discussed.  Previous  results  from 3D geostrophy for homogeneous flows have been com- 

pared  and we have shown in  the  Appendix  that  their conclusions can  be  extended to 

describe  stratified fluid layers. The implications of planetary scale geostrophy  on the 

hydrostatic  approximation,  thermal wind relations and  the non-geostrophic nature of 

equatorial zonal flows have also been  established. In  the  hydrostatic  approximation, 

a cylindrical  symmetry  is  introduced by relation (2). Another  result is that vertical 

wind shears may be several times  smaller than previously thought,  depending  on  the 

latitude. 3D geostrophy  has also provided information on  the vertical  derivatives of 
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the  three components of the geostrophic  wind. This may be useful to infer vertical 

transport. 

On  the observational  side,  three proxies have been used for inferring low-noise regu- 

larly  gridded  maps of vertical transport  in  the  upper Jovian  troposphere  using  ground- 

based  infrared  observations. The proxies have been used to  obtain  planetary scale maps 

of buoyancy, vertical  wind  shears, and residual  mean  circulation. The  three proxies 

used put forward  diverse  predictions. Some of these are consistent  with  one another, 

and some are  not. Since the validity of each proxy depends  on the dynamical regime 

that controls the  temperature profiles, establishing the validity of each proxy will help 

to  understand  the dynamical state of Jupiter  at  the  depth of our  observations. 

All three proxies imply a large  amount of zonal  organization.  They  also show  two 

relatively warm bands  centered at 15"N and  15"s  that display  considerable  longitu- 

dinal  structure,  the most prominent of which  is the cold Great  Red  Spot.  This  and 

smaller  elliptically  shaped  features have sizes that  are several  times the Rossby radius 

of deformation which indicates that geostrophy  plays an  important role in  their  dynam- 

ics. In general, the maps show little variability  with  height  indicating  a  high degree of 

barotropicity  (this is not always expected e.g. Dritschel  et  al. 1999 and Dritschel & de 

la  Torre JuArez 1996). In  the zonal  mean, however, the changes of sign of the zonally 

averaged vertical  wind  in  Figures 9a-9d imply some baroclinicity at higher latitudes. 

Apart from the similarities,  there  are  several differences in  the  interpretation of 

the  temperature maps that  depend on which proxy we choose. These differences are 

worth  mentioning,  since the validation of one rather  than  another will define what  are 

the  structures  and principles  controlling the Jovian  winds at these  heights. The first 

difference between the proxies is in the  interpretation of the vertical  motion  associated 

with  the  longitudinal  structure.  The  structures observed in  the density  maps  along 

a given latitude reflect deformations of isobaric  surfaces and  do not necessarily imply 

vertical  motion. The nonzero values of aw/az* resulting from the geostrophic  method 
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do, however, imply  vertical transport. If the usual  assumption is taken that  the vertical 

wind derivatives are  constant from a level of zero velocity, the vertical  gradient of w 

is proportional  to w itself. The longitudinal structures in the  latitude  bands  around 

15"N and 15"s represent  overturning cells then  in  the 3D geostrophic  interpretation. 

If overturning really occurs  here  as  predicted by the geostrophic  approach,  one would 

expect  a significant amount of deeper  material  being upwelled and  subducted more 

frequently  in  these two bands  than  at  other  latitudes.  The observed structures  in 

both,  the geostrophy and buoyancy based proxies, would be  consistent  with  a higher 

standard deviation of the observed concentration of volatiles on these two bands.  The 

third proxy is based on zonal  means, and  thus it  cannot  be used for comparison  because 

the averaging  procedure  masks  any  longitudinal  information. 

A second difference is on the location of vertical  motion  implied by the first two 

proxies. From (4), an intensification of geostrophic  vertical transport should  occur where 

the longitudinal temperature gradients  increase and should decay where this gradient 

approaches zero in  order to change its sign when the sign of the gradient changes. 

Conversely the buoyancy criterion  locates the  updrafts  and downdrafts at  the longitudes 

with local temperature maxima and minima, where the horizontal temperature gradients 

are close to zero and with  symmetric signs of the vertical velocity around  these  maxima 

and minima. As a consequence, both dynamical regimes predict different locations of 

the  updrafts  and downdrafts. 

The  third difference is in the  picture  obtained from the residual  mean  circulation. 

Under the restrictions discussed in  section 6, the residual  mean  circulation shows the 

signatures of the Jovian Hadley cells. In Figures 9 the  equatorial  latitudes show a 

constant  vertical  motion while the higher latitudes show a change of sign with  height. 

This  change of sign is consistent  with an inversion of the high latitude dynamics  within 

the range of heights  observed. Such an inversion is  not  present  in the  other two proxies. 

A fourth difference is that  the direction of vertical transport inferred from the heat 
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equation for the residual  mean  circulation,  under the  assumption of Newtonian cooling, 

is the opposite to  that  obtained  in a dynamical regime driven by buoyancy. The residual 

mean  circulation  appears most consistent  with  indirect inferences about upwelling and 

downwelling regions based  on the condensate  mixing  ratios  derived, for example, by 

Voyager IRIS  remote  sensing data (Gierasch  et  al. 1986). Cold latitudes  correlate well 

with  areas of increased  cloud  albedo and  the warm latitudes  correlate  with lower cloud 

albedo. The common interpretation  is  that regions of high cloud  albedo  are  caused by 

upwellings that  transport condensates  from  deeper levels increasing the cloudiness and 

humidity at cold latitudes.  In  contrast,  a  dynamical regime driven by buoyancy would 

imply that warm areas  are upwelling and cold parcels of gas are heavier and therefore 

downwelling. We cannot  rule  out  the proxy which relies on buoyancy for several  reasons. 

First, our  interpretations of condensate  mixing  ratios are based  on the  assumption  that 

local effects dominate  their  latitudinal profile. However, the more complete observa- 

tional knowledge associated  with the  Earth’s  transport mechanisms between the  upper 

troposphere  and  the lower stratosphere shows a complex situation where nonlocal  dy- 

namics  can outweigh local effects in  shaping the  planetary scale circulation  (Holton  et  al. 

1995). Second,  there may be  systematic effects  involved in the comparison  between the 

depths where we are measuring the  temperatures  and  the  depths of the cloud tops. Most 

of what we know of Jovian  dynamics  or  evidence of transport is  based  on  measurements 

of tracer  features at  the cloud-top level. Our  IR  measurements  are  sensitive to layers 

well above,  including the  transition from the  troposphere  to  the lower stratosphere. 

This may lead to some phenomena specific to such  transition regions. One of them is 

that a combination of nonlocal transport  and a mechanism  similar to  the freeze-drying 

of water  vapor observed near the convective updrafts  at  the  Earth’s  tropopause may 

be also  happening  in  Jupiter.  This could cause a lower ammonia  mixing ratio located 

right  on the buoyant  updrafts. A different possibility would be an inversion of the signs 

of the vertical velocity and of the horizontal  density and  temperature  gradients.  They 
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are  expected between  masses of gas above and below regions of strong cyclonic or an- 

ticyclonic vorticity  (Pedlosky 1987), for example the horizontal temperature  gradients 

reported  near  the  Earth’s  tropopause (e.9. Hoskins et  al. 1985, Holton et  al. 1995). 

Such an inversion would be consistent  with a regime driven by  buoyancy and cannot 

be excluded in  Jupiter  with  the present  observational evidence. It could be responsible 

for different dynamical regimes at  the cloud level and  at  our observational level (cold 

areas  on  top of deeper warm areas). If this inversion were happening  in  Jupiter,  the 

estimates of zonally averaged ammonia  abundances  (Gierasch  et  al. 1986) would  need 

another  interpretation.  The  traditional  picture is that higher ammonia  concentrations 

are a manifestation of updrafts  carrying  material  from  deeper levels.  Such convective 

overshooting would be accompanied  with transport of deeper warmer gas to higher lev- 

els and should  therefore  correlate  with a higher temperature  than  the gas at a similar 

height, which is not the case. If the inversion is happening,  the  anticorrelation of am- 

monia with  the buoyancy force, would be reflecting a selective overshooting. The  study 

of transport of lagrangian  tracers  has shown that particles denser than  the surrounding 

fluid display some sort of ‘inertial diffusion’ (Crisanti  et  al. 1990): A passive tracer  that 

is heavier than  the fluid with which it moves, carries higher inertia.  Once a heavier 

particle  has  started motion, it requires a higher drag  in order to  be  stopped  and  this is 

the cause for ‘inertial difussion’. Ammonia’s higher molecular weight could be causing 

a possible convective overshooting to higher levels than  the surrounding hydrogen. This 

would open  the possibility of ammonia  being more abundant  in  areas where a colder gas, 

mostly  hydrogen,  has  inverted its vertical velocity and is downwelling. The  ultimate 

arbiter between these  competing  hypotheses, of course, would be reliable  measurements 

of vertical  winds  in different regions of Jupiter,  but these are unlikely to  be available 

for  some time.  The absence of visible tracers at these levels  above the clouds make in 

situ measurements the only candidates to solve these puzzles. 
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APPENDIX: FULL THERMAL WIND RELATIONS. 

In  this Appendix, we present the  thermal wind equations  obtained when using the 

3D geostrophic  condition and  the new hydrostatic  approximation. This produces  a  set 

of equations  that  are of the same  order of approximation  as  the  geostrophic velocity 

and  in which the indeterminacy  in the geostrophic velocity does  not play a role. 

The 3D thermal wind relations  are  obtained  from the vorticity  equation  after  drop- 

ping the nonlinear  terms. We first  rewrite the full  momentum  equation  as 

After  dropping  the  nonlinear  terms  and  the  time  derivative ( i e .  using the geostrophic 

balance  condition), we take  the curl which, after  using some vector identities (e.g. 

Holton 1992) and  the anelasticity  condition,  leads  to: 

where the ageostrophic velocity has  been  neglected. This expression is the 3D vector 

form of the  thermal wind (we are  still keeping the full  planetary  vorticity  and,  hence, 

we cannot  drop the vertical velocity terms  yet), which holds to order O(ERO).  We note 

at  this point that  the indeterminacy  in the geostrophic velocity does  not  change this 

expression ( A l ) .  The reason is that  vg  as was  given in (3) is  non-divergent. As a 

consequence, if an indeterminacy A(z, y, z )  in the  direction i is allowed, the continuity 

equation  requires that 0 = V(EPZI~ + pA(z ,  y, z ) i )  = apA(z,y,  z)/a.Z. That is, the 

indetermination  does not contribute  to  the derivative  along the  rotation axis. Since 

the  thermal wind involves the derivative  along the  rotation axis, allowing for a nonzero 

A(z,y ,z )  may change the geostrophic velocity, but will not affect the  thermal wind 

relations. 

-+ 

Using the no-buoyancy assumption from (1) (-Vp + p i j  = + 0 ( e 2 ) ) ,  one has: 
-+ 
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The dominant  contribution is hence given  by the  traditional baroclinic term B' = 
-9 (i) A q p ,  and  the rest will be  neglected. IR measurements  provide temperature in- 

formation  as  a  function of pressure. It is therefore  desirable to work with the baroclinic 

term using T and p as the variables.  In an ideal gas this yields: B' = -? (i) A V p  = 

f T  A q p .  B' is zero when isothermal  and  pressure  surfaces  are  parallel and,  to 

+ 

" 

"P 

first  order of approximation  in E, B' becomes: 

-4 R VT A p p  R ?(ph + ~pp l )  A fk R V p h  A V p 1  A q T h  B = - -  - - = E- ( + ) + 0 ( E 2 ) .  
MT P MT Ph + EPl M, Ph  Ph 

Where T ( x ,  y , z )  = Th(X) + ET'(x, y , z )  + 0 ( c 2 )  has  been used. Finally,  noting that  the 

velocity is of order E ,  and  that ~ ( x ,  y, z )  = P h ( z )  + E ~ ' ( x ,  y ,  z ) ,  one can  rewrite the  spatial 

derivatives  in  pressure  coordinates defined as: 

with vi being the components of the velocity vector and wi -gpvi.  One  can now use 

that V p h  = "Phge', to write (Al )  in  pressure  coordinates  as: 
-+ 

The results (Al )  and (A2) are  the anelastic version of the  thermal wind  relations 

discussed  for  incompressible  fluids by de Verdikre and Schopp 1994 or Busse 1978. 

Expression (A2) shows that if pressure  coordinates  are  used, the result for anelastic 

flows looks similar to incompressible flows under the  notation change: 

This analogy  provides evidence in favor of a partial extension of results  obtained  in 

Oberbeck-Boussinesq models like discussed by Zhang and Schubert 1995 or references 

therein. 

36 



The component form of the  thermal relation (A2) is: 

These three expressions  are the 3D extension of the  traditional geostrophic  model. 

Following their conclusions as well as Veronis 1968 and  Phillips 1968, this result will hold 

at all latitudes a t  least under the dynamical  conditions where the  traditional approach 

is valid. Some differences are  apparent.  The  temperature  gradient is the only effect 

appearing  in  the  traditional 2D thermal  wind  relations.  The  reason for this is the 

inclusion of the baroclinic  terms neglected in the  permutation carried  in  section 5.3 of 

the lower order thermal wind  relations. In  the  traditional  approximation  this problem 

does  not appear.  In our  approach the density  gradient is parallel to  the vertical  vector, 

which  is not  parallel to  the variable  along the axis of rotation 2,. As a  consequence, the 

vertical  derivatives and  the horizontal  derivatives are strongly  coupled. The new (non- 

traditional)  terms  that  appear  in our relations,  arise from terms of order neglected 

in the classical  approach and  the  intermediate approach  leading to expressions (4). 

The  thermal wind relations (A2) describe the change of the velocity field along the 

rotation axis.  They  are of interest for the sake of completeness and modeling  purposes. 

However, their use in  diagnostics is limited.  They  require  independent  simultaneous 

measurements of the  temperature  and pressure  anomaly at levels much deeper than  IR 

observations  can  reliably  provide. This inconvenience was  overcome  by the  intermediate 

approach  leading to relations (4) in  section 5.3. 
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Figure Captions 

Figure 1. Normalized weighting functions for each observational  bandpass. The 

normalized weighting functions show the relative  contribution  to  the  outgoing flux from 

each pressure level. 

Figure 2. Composite global temperature  maps  as a function of planetocentric  latitude 

and west System I11 longitude. Note the  the bright  feature  near 25" W, 25" N, is the 

Jovian moon Io which  was transiting  during  the observation. 

Figure 3. Mean zonal temperatures for our four pressure levels as a function of 

planetographic  latitude.  The  error  bars  represent  the  one  standard  deviation level of 

all of the available data  at each latitude.  The longitudes  containing the Io image  were 

excluded. 

Figure 4. Normalized density  anomalies for the four pressure levels. Note the  the 

dark  feature  near 25" W, 25" N, is the  Jovian moon Io which  was transiting  during  the 

observation. 

Figure 5. Mean zonal values of the zonal component of the geostrophic wind shear, < 

au,/&* >, for the  upper  and lower pressure levels, compared to  the cloud derived winds 

(solid line)  from Limaye 1986. Results using the classical hydrostatic  approximation  are 

shown as filled circles. Results using equation  (2)  are shown as  open  squares. The upper 

two panels are scaled to show the full range. The lower panels are scaled to show the 

details of the small amplitude  structure.  Panel (a) corresponds to  the 100 mbar  pressure 

level, (b)  to 400 mbar , (c)  to 100 mbar,  and  (d)  to 400 mbar. 

Figure 6. The zonal component of the geostrophic wind shear, aug/az*, for each 

pressure level. The Jovian moon Io transiting  Jupiter causes an artifact  near 25" W, 

25"  N. 

Figure 7. The meridional  component of the geostrophic wind shear, 8v9/az*, for 

each pressure level. The  Jovian moon Io transiting  Jupiter causes an artifact  near 25" 

W, 25"  N. 
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Figure 8. The vertical  component of the geostrophic wind shear, dwg/&*, for each 

pressure level. The Jovian moon Io transiting  Jupiter causes an  artifact  near 25" W, 

25" N. 

Figure 9. Mean zonal averages of the vertical transport  in  units of W T ~ / H ,  for the 

four pressure levels. Panel (a) corresponds to  the 100 mbar  pressure level, (b)  to 200 

mbar , (c)  to 316 mbar,  and  (d)  to 400 mbar. 
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